Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena-Poly[piperazinium(2+) [ferrate(III)- μ -hydroxo- $\kappa^2 O$:O-di- μ -sulfato- $\kappa^4 O$:O'] dihydrate]

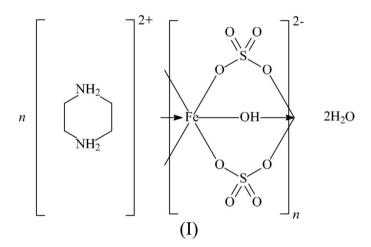
Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ Disorder in solvent or counterion R factor = 0.035 wR factor = 0.134 Data-to-parameter ratio = 11.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the crystal structure of the polymeric title compound, $\{(C_4H_{12}N_2)[Fe(OH)(SO_4)_2]\cdot 2H_2O\}_n$, the anion exists as a linear chain whose two independent Fe^{III} atoms both occupy special positions of $\overline{1}$ site symmetry. The two independent cations, which also lie on inversion sites, interact with the polyanionic chain and with the uncoordinated water molecules to form a tight-held three-dimensional network.

Received 18 July 2005 Accepted 22 July 2005 Online 27 July 2005

Comment

This report continues previous studies on the reaction of ferric sulfate and amines under hydrothermal conditions; the polyanionic hydroxodisulfatoferrate(III) chain was obtained with the use of hexamethylenediamine (Fu *et al.*, 2005*a*) and ethylenediamine (Fu *et al.*, 2005*b*). The use of the diamine, piperazine, afforded the expected anion; the compound crystallizes as a dihydrate, (I) (Fig. 1).

The polyanionic chain is linear (Fig. 2), and the cations and uncoordinated water molecules link the chains into a three-dimensional network through hydrogen bonds (Table 2). The principal features, *e.g.* bond dimensions and repeat distance, of the chain are similar to those reported previously.

Experimental

Ferric sulfate nonahydrate (1.68 g, 3.0 mmol) was dissolved in a water–ethanol mixture (1:1, v/v, 10 ml). Concentrated sulfuric acid (0.16 ml, 3 mmol) was added followed by piperazine (0.26 g, 3 mmol). The mixture was stirred briefly to form a homogeneous gel; the gel was transferred into a 15 ml Teflon-lined Parr bomb that was then heated 383 K for 48 h. Yellow crystals were isolated in about 80% yield (with respect to Fe).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

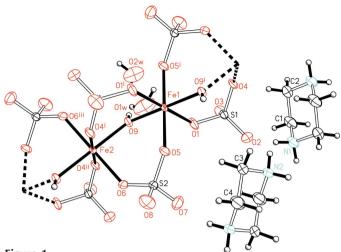
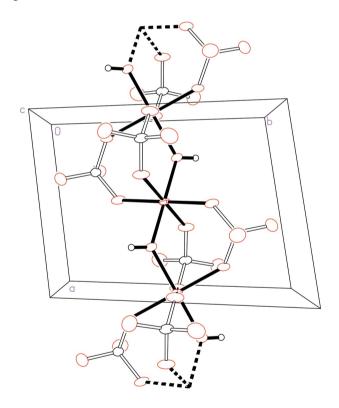



Figure 1 ORTEPII plot (Johnson, 1976) showing the atom-numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level. Only one of the disordered water molecules is shown. The symmetry codes are as given in Table 1.

ORTEPII plot (Johnson, 1976) of the polyanionic [Fe(OH)(SO₄)₂] chain.

Crystal data

•	
$(C_4H_{12}N_2)[Fe(OH)(SO_4)_2]\cdot 2H_2O$	Z = 2
$M_r = 389.17$	$D_x = 1.972 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.0983 (6) Å	Cell parameters from 1907
b = 10.4690 (9) Å	reflections
c = 10.5212 (9) Å	$\theta = 2.3-28.1^{\circ}$
$\alpha = 60.421 \ (1)^{\circ}$	$\mu = 1.53 \text{ mm}^{-1}$
$\beta = 76.616 \ (1)^{\circ}$	T = 295 (2) K
$\gamma = 76.797 (2)^{\circ}$	Block, yellow
$V = 655.4 (1) \text{Å}^3$	$0.24 \times 0.09 \times 0.07 \text{ mm}$

Data collection

D. I. ADEN. I	2264: 1 1 4 9 4:
Bruker APEX area-detector	2264 independent reflections
diffractometer	2047 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 8$
$T_{\min} = 0.493, T_{\max} = 0.901$	$k = -12 \rightarrow 11$
3388 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0823P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.1835P
$wR(F^2) = 0.134$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.22	$(\Delta/\sigma)_{\text{max}} = 0.001$
2264 reflections	$\Delta \rho_{\text{max}} = 0.71 \text{ e Å}^{-3}$
193 parameters	$\Delta \rho_{\min} = -0.69 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

E-1 O1	2.020 (2)	Fe2-O4 ⁱⁱ	2.021 (2)
Fe1-O1	2.030 (3)		2.021 (2)
Fe1-O1 ¹	2.030(3)	$Fe2-O4^{1}$	2.021 (2)
Fe1-O5	2.025 (2)	Fe2-O6	2.032 (2)
Fe1-O5 ⁱ	2.025(2)	Fe2-O6 ⁱⁱⁱ	2.032 (2)
Fe1-O9	1.956(2)	Fe2-O9	1.964 (2)
Fe1-O9 ⁱ	1.956 (2)	Fe2-O9iii	1.964 (2)
O1-Fe1-O5	91.7 (1)	$O4^{ii}$ -Fe2-O6	91.2 (1)
$O1-Fe1-O5^{i}$	88.4 (1)	$O4^{ii}$ -Fe2- $O6^{iii}$	88.8 (1)
O1-Fe1-O9	90.4(1)	$O4^{ii}$ -Fe2-O9	89.7 (1)
O1-Fe1-O9i	89.6 (1)	$O4^{ii}$ -Fe2- $O9^{iii}$	90.3 (1)
O5-Fe1-O9	89.6 (1)	O6-Fe2-O9	90.0 (1)
$O5-Fe1-O9^{i}$	90.4 (1)	O6-Fe2-O9iii	90.0 (1)
Symmetry codes:	(i) $-x + 1, -y$	+1, -z + 1; (ii)	x+1, y, z; (iii)
-x + 2, -y + 1, -z + 1.		. , ()	. , , , , , , , ()

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O9−H9o···O1w	0.85	1.97	2.773 (4)	158
$O1w-H1w1\cdots O2w$	0.85	2.16	2.657 (8)	117
$O1w-H1w2\cdots O2w^{iv}$	0.86	1.99	2.78 (1)	152
$O1w-H1w1\cdots O2w$	0.85	2.06	2.83 (1)	150
$O2w-H2w1\cdots O3^{iv}$	0.86	2.06	2.752 (8)	137
$O2w-H2w2\cdotsO8^{v}$	0.86	1.97	2.717 (8)	146
$O2w'-H2w3\cdots O3^{iv}$	0.87	2.20	2.91(1)	139
$O2w'-H2w4\cdots O8^{v}$	0.87	2.03	2.82 (1)	149
N1−H11···O2	0.90	1.98	2.835 (5)	157
$N1-H12\cdots O1w^{vi}$	0.90	2.09	2.909 (5)	151
$N2-H21\cdots O7^{vii}$	0.90	1.89	2.762 (4)	163
N2−H22···O2	0.90	2.17	2.852 (5)	132

Symmetry codes: (iv) -x + 1, -y, -z + 2; (v) x, y - 1, z + 1; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y + 1, -z.

One of the two water molecules is disordered over two positions; as the occupancy refined to nearly 0.5:0.5, the disorder was fixed at exactly 0.5:0.5. The water H atoms were placed at chemically sensible positions on the basis of hydrogen-bonding interactions, but they were not refined. Other H atoms were positioned geometrically [C-H = 0.97 Å and N-H = 0.90 Å; $U_{iso}(H) = 1.2 U_{eq}(C,N)$] and were included in the refinement in the riding-model approximation.

metal-organic papers

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m596–m597.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m1478– m1480.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.